SUBSTRATA MAIN PAGE


Methanobrevibacter smithii

RANK: Species

TAXONOMY: Archaea -> Euryarchaeota -> Methanobacteria -> Methanobacteriales -> Methanobacteriaceae -> Methanobrevibacter -> Methanobrevibacter smithii

OVERVIEW:

'Methanobrevibacter smithii' is the predominant archaeon in the human gut. It plays an important role in the efficient digestion of polysaccharides (complex sugars) by consuming the end products of bacterial fermentation. Methanobrevibacter smithii is a single-celled microorganism from the Archaea domain. M. smithii is a methanogen, and recycles the hydrogen in methane, allowing for an increase in the extraction of energy from nutrients. M. smithii (coefficient=-0.43, 95% CI -0.90 to 0.05; P=0.08) was negatively associated with the BMI. [PMID: 23459324 ] Is negatively correlated with BMI. Increased in anorexic patients. Observational studies show a strong association between delayed intestinal transit and the production of methane. Experimental data suggest a direct inhibitory activity of methane on the colonic and ileal smooth muscle and a possible role for methane as a gasotransmitter. Archaea are the only confirmed biological sources of methane in nature and Methanobrevibacter smithii is the predominant methanogen in the human intestine. [PMID: 26559904]

Statins can inhibit archaeal cell membrane biosynthesis without affecting bacterial numbers as demonstrated in livestock and humans. This opens the possibility of a therapeutic intervention that targets a specific aetiological factor of constipation while protecting the intestinal microbiome. While it is generally believed that statins inhibit methane production via their effect on cell membrane biosynthesis, mediated by inhibition of the HMG-CoA reductase, there is accumulating evidence for an alternative or additional mechanism of action where statins inhibit methanogenesis directly. It appears that this other mechanism may predominate when the lactone form of statins, particularly lovastatin lactone, is administered. [PMID: 26559904]

This species has been identified as a resident in the human gastrointestinal tract based on the phylogenetic framework of its small subunit ribosomal RNA gene sequences.[PMC 4262072]

COGEM
COGEM released a comprehensive database of pathogenicity assessment of around 2575 bacterial species in 2011. The database ranks the pathogenicity of species on a scale of 1 to 4. Methanobrevibacter smithii ranks on this scale:


TAGS
Keystone
Core species
Type species
Pathogen
Dysbiosis associated
Flora/ commensal
Gut associated
Probiotic
Leanness
Obesity
Skin microbiome
Fecal distribution
Oral microbiome
Vaginal microbiome
Butyrate producer
Catalase producer
Histamine producer
Food fermenter
Amylolytic
Propionate producer
Nitrifying
Biofilm producer
INTERACTIONS
KEGG PATHWAYS

CLUSTERS WITH
METABOLOMICS       
ANTIBIOTIC RESISTANCE   BIOFILM FORMERS   COGEM PATHOGENICITY   

SUBSTRATA™ IS A REGISTERED TRADEMARK ® OF DATAPUNK BIOINFORMATICS, LLC. COPYRIGHT © 2015, 2016, 2017, 2018 ALL RIGHTS RESERVED.    |    DEVELOPER BLOG     |