SUBSTRATA MAIN PAGE


Atopobium

RANK: Genus

TAXONOMY: Bacteria -> Terrabacteria group -> Actinobacteria -> Coriobacteriia -> Coriobacteriales -> Atopobiaceae -> Atopobium

OVERVIEW:

Cells consist of short rods, often with central swellings, or small cocci that may appear to be elliptical. They occur singly, in pairs, and in short chains. Gram-stain-positive, does not form spores, and is nonmotile. Obligately or facultatively anaerobic and catalase-negative. Nitrate is not reduced. The major fermentation products from glucose are lactic acid together with acetic and formic acids; trace amounts of succinic acid may be formed. Hydrogen is not produced. Growth is stimulated by Tween 80. Growth may occur in the presence of 6.5% w/v NaCl. Gelatin is not liquefied, meat is not digested and indole is not produced. Isolated from human and animal sources.DNA G+C content (mol%): 35–46 (Tm). Type species: Atopobium minutus

This genus contains microbial species that can reside in the human gastrointestinal tract. [PMC 4262072]



Microbial Abundance Data: Atopobium
(Percent of total population with standard deviation [PMID: 22698087])
Group 1
Group 2
Group 3
Group 4
Group 1 Avg
Buccal
Mucosa
Keratinized
Gingiva
Hard
Palate
Group 2 Avg
Throat
Throat
Tonsils
Saliva
Group 3 Avg
Supragingival
Plaque
Subgingival
Plaque
Stool
0.140 %
(0.198)
0.063 %
(0.088)
0.009 %
(0.045)
0.348 %
(0.463)
0.518 %
(0.625)
0.582 %
(0.643)
0.372 %
(0.505)
0.609 %
(0.761)
0.507 %
(0.588)
0.067 %
(0.190)
0.027 %
(0.066)
0.107 %
(0.313)
0.001 %
(0.012)
TAGS
Keystone
Core species
Type species
Pathogen
Dysbiosis associated
Flora/ commensal
Gut associated
Probiotic
Leanness
Obesity
Skin microbiome
Fecal distribution
Oral microbiome
Vaginal microbiome
Butyrate producer
Catalase producer
Histamine producer
Food fermenter
Amylolytic
Propionate producer
Nitrifying
Biofilm producer
DESCENDANTS
INTERACTIONS
KEGG PATHWAYS
  • 2-Oxocarboxylic acid metabolism
  • ABC transporters
  • Acarbose and validamycin biosynthesis
  • Alanine, aspartate and glutamate metabolism
  • Amino sugar and nucleotide sugar metabolism
  • Aminoacyl-tRNA biosynthesis
  • Arachidonic acid metabolism
  • Arginine and proline metabolism
  • Arginine biosynthesis
  • Ascorbate and aldarate metabolism
  • Bacterial secretion system
  • Base excision repair
  • Biosynthesis of amino acids
  • Biosynthesis of antibiotics
  • Biosynthesis of secondary metabolites
  • Biosynthesis of unsaturated fatty acids
  • Biotin metabolism
  • Butanoate metabolism
  • Carbon metabolism
  • Chloroalkane and chloroalkene degradation
  • Cyanoamino acid metabolism
  • Cysteine and methionine metabolism
  • D-Alanine metabolism
  • D-Glutamine and D-glutamate metabolism
  • DNA replication
  • Degradation of aromatic compounds
  • Fatty acid biosynthesis
  • Fatty acid metabolism
  • Folate biosynthesis
  • Fructose and mannose metabolism
  • Galactose metabolism
  • Glutathione metabolism
  • Glycerolipid metabolism
  • Glycerophospholipid metabolism
  • Glycine, serine and threonine metabolism
  • Glycolysis / Gluconeogenesis
  • Glyoxylate and dicarboxylate metabolism
  • Homologous recombination
  • Lysine biosynthesis
  • Metabolic pathways
  • Methane metabolism
  • Microbial metabolism in diverse environments
  • Mismatch repair
  • Monobactam biosynthesis
  • Naphthalene degradation
  • Nicotinate and nicotinamide metabolism
  • Nitrogen metabolism
  • Nucleotide excision repair
  • One carbon pool by folate
  • Other glycan degradation
  • Oxidative phosphorylation
  • Pantothenate and CoA biosynthesis
  • Pentose and glucuronate interconversions
  • Pentose phosphate pathway
  • Peptidoglycan biosynthesis
  • Phenylalanine metabolism
  • Phenylalanine, tyrosine and tryptophan biosynthesis
  • Phosphotransferase system (PTS)
  • Polyketide sugar unit biosynthesis
  • Porphyrin and chlorophyll metabolism
  • Propanoate metabolism
  • Protein export
  • Purine metabolism
  • Pyrimidine metabolism
  • Pyruvate metabolism
  • RNA degradation
  • RNA polymerase
  • Riboflavin metabolism
  • Ribosome
  • Selenocompound metabolism
  • Starch and sucrose metabolism
  • Streptomycin biosynthesis
  • Sulfur metabolism
  • Sulfur relay system
  • Taurine and hypotaurine metabolism
  • Terpenoid backbone biosynthesis
  • Thiamine metabolism
  • Two-component system
  • Tyrosine metabolism
  • Valine, leucine and isoleucine biosynthesis
  • Valine, leucine and isoleucine degradation
  • Vancomycin resistance
  • Vitamin B6 metabolism
  • beta-Alanine metabolism
  • beta-Lactam resistance

  • CLUSTERS WITH
    METABOLOMICS       
    ANTIBIOTIC RESISTANCE   
    BIOFILM FORMERS   COGEM PATHOGENICITY   

    SUBSTRATA ™ IS A REGISTERED TRADEMARK ® OF DATAPUNK BIOINFORMATICS, LLC. COPYRIGHT © 2015, 2016, 2017, 2018, 2019 ALL RIGHTS RESERVED.    |    DEVELOPER BLOG     |