Enterococcus

   RANK: Genus

TAXONOMY: Bacteria -> Terrabacteria group -> Firmicutes -> Bacilli -> Lactobacillales -> Enterococcaceae -> Enterococcus

OVERVIEW:

'Enterococcus' is a large genus of lactic acid bacteria of the phylum Firmicutes. Enterococci are Gram-positive cocci that often occur in pairs (diplococci) or short chains, and are difficult to distinguish from streptococci on physical characteristics alone. Two species are common commensal organisms in the intestines of humans: Enterococcus faecalis E. faecalis (90-95%) and Enterococcus faecium E. faecium (5-10%). Rare clusters of infections occur with other species, including E. casseliflavus, Enterococcus gallinarum E. gallinarum, and E. raffinosus. The genus Enterococcus presently contains 43 recognised species occurring in a wide variety of environments. Enterococci are naturally associated with the gastrointestinal tract of humans and animals, however they may be isolated from food, especially from meat, dairy and plant food fermentations, as well as from the environment.

The Enterococci inhabit harsh environments, like the intestinal tracts of humans and animals. Growth under these hostile conditions requires that E. faecalis have a metabolism that is flexible. E. faecalis are capable of not only fermentation to produce lactic acid but also can “catabolize a spectrum of energy sources from carbohydrates, glycerol, lactate, malate, citrate, diamino acids and many α-keto acids”. It has been shown that under selected growth conditions E. faecalis can enhance growth through oxidative phosphorylation using a proton motive force established by electron transport. A consequence of “nascent respiration is production of potent oxidants” (e.g. superoxide and hydrogen peroxide), oxidative stress the E. faecalis can tolerate. The tolerance of this stress, combined with other severe growth conditions, allows the E. faecalis to grow at 10 to 45°C, in bile salts, and at extremely low and high pHs. In addition, E. faecalis can resist azide, detergents, heavy metals, and ethanol. Since E. faecalis can utilize varied sugar sources it can live in diverse environments, especially in the intestine where nutrients are limited. In the intestine, E. faecalis derive most of their energy from the fermentation of non-absorbed sugars. E. faecalis can also get energy by degrading mucins, a carbohydrate that is heavily glycosylated and produced by intestinal goblet cells.

They are frequent causes of hospital-acquired infections in immunocompromised patients, in patients receiving surgery or in patients with severe underlying diseases. Production of a variety of virulence factors and high intrinsic and acquired resistances to multiple antibiotics among some enterococcal strains often complicates proper treatment. On the other hand, some enterococcal strains have beneficial properties which are utilized in the development of starter cultures for food fermentations or as probiotics. Gram-positive. Cells are ovoid, occur singly, in pairs, or in short chains, and are frequently elongated in the direction of the chain. Nonsporeforming. Strains of some species may be motile by scanty flagella. Some species are yellow pigmented. Facultatively anaerobic. Certain species are carboxyphilic (CO2-dependent). Catalase-negative, but some strains reveal pseudocatalase activity when cultivated on blood-containing agar media. Hemolytic activity is variable and largely species-dependent.

DNA G+C content (mol%): 35.1–44.9.

Type species: Enterococcus faecalis

This genus contains microbial species that can reside in the human gastrointestinal tract. [PMC 4262072]

A significant association was observed between commensal microbial composition and clinical response to anti-PD-1-based immunotherapy. Bacterial species more abundant in responders included Bifidobacterium longum, Collinsella aerofaciens, and Enterococcus faecium. PMID: 29302014



Microbial Abundance Data: Enterococcus
(Percent of total population with standard deviation [PMID: 22698087])
Group 1
Group 2
Group 3
Group 4
Group 1 Avg
Buccal
Mucosa
Keratinized
Gingiva
Hard
Palate
Group 2 Avg
Throat
Throat
Tonsils
Saliva
Group 3 Avg
Supragingival
Plaque
Subgingival
Plaque
Stool
0.000 %
(0.002)
0.000 %
(0.000)
0.000 %
(0.001)
0.001 %
(0.006)
0.000 %
(0.003)
0.000 %
(0.003)
0.001 %
(0.004)
0.000 %
(0.000)
0.001 %
(0.004)
0.000 %
(0.001)
0.000 %
(0.000)
0.000 %
(0.002)
0.003 %
(0.036)
TAGS
Keystone Core species Type species Pathogen Dysbiosis associated Flora/ commensal Gut associated Probiotic
Leanness Obesity Skin microbiome Fecal distribution Oral microbiome Vaginal microbiome Butyrate producer Catalase producer
Histamine producer Food fermenter Amylolytic Propionate producer Nitrifying
DESCENDANTS
  • Enterococcus alcedinis
  • Enterococcus aquimarinus
  • Enterococcus asini
  • Enterococcus avium
  • Enterococcus azikeevi
  • Enterococcus caccae
  • Enterococcus camelliae
  • Enterococcus canintestini
  • Enterococcus canis
  • Enterococcus casseliflavus
  • Enterococcus cecorum
  • Enterococcus columbae
  • Enterococcus devriesei
  • Enterococcus diestrammenae
  • Enterococcus dispar
  • Enterococcus durans
  • Enterococcus eurekensis
  • Enterococcus faecalis
  • Enterococcus faecium
  • Enterococcus gallinarum
  • Enterococcus gilvus
  • Enterococcus haemoperoxidus
  • Enterococcus hawaiiensis
  • Enterococcus hermanniensis
  • Enterococcus hirae
  • Enterococcus inusitatus
  • Enterococcus italicus
  • Enterococcus lactis
  • Enterococcus lemanii
  • Enterococcus malodoratus
  • Enterococcus moraviensis
  • Enterococcus mundtii
  • Enterococcus olivae
  • Enterococcus pallens
  • Enterococcus pernyi
  • Enterococcus phoeniculicola
  • Enterococcus plantarum
  • Enterococcus pseudoavium
  • Enterococcus quebecensis
  • Enterococcus raffinosus
  • Enterococcus ratti
  • Enterococcus rattus
  • Enterococcus rivorum
  • Enterococcus rotai
  • Enterococcus saccharolyticus
  • Enterococcus silesiacus
  • Enterococcus sp.
  • Enterococcus sp. 2011_Ileo_MS_B2
  • Enterococcus sp. C6I11
  • Enterococcus sp. SI-4
  • Enterococcus sulfureus
  • Enterococcus termitis
  • Enterococcus thailandicus
  • Enterococcus ureasiticus
  • Enterococcus ureilyticus
  • Enterococcus viikkiensis
  • Enterococcus villorum
  • Enterococcus xiangfangensis
  • environmental samples
  • INTERACTIONS
    KEGG PATHWAYS
  • 2-Oxocarboxylic acid metabolism
  • ABC transporters
  • Alanine, aspartate and glutamate metabolism
  • Amino sugar and nucleotide sugar metabolism
  • Aminoacyl-tRNA biosynthesis
  • Aminobenzoate degradation
  • Arginine and proline metabolism
  • Arginine biosynthesis
  • Ascorbate and aldarate metabolism
  • Bacterial secretion system
  • Base excision repair
  • Benzoate degradation
  • Biosynthesis of amino acids
  • Biosynthesis of antibiotics
  • Biosynthesis of secondary metabolites
  • Biosynthesis of unsaturated fatty acids
  • Biotin metabolism
  • Butanoate metabolism
  • C5-Branched dibasic acid metabolism
  • Carbapenem biosynthesis
  • Carbon metabolism
  • Cationic antimicrobial peptide (CAMP) resistance
  • Chloroalkane and chloroalkene degradation
  • Chlorocyclohexane and chlorobenzene degradation
  • Citrate cycle (TCA cycle)
  • Cyanoamino acid metabolism
  • Cysteine and methionine metabolism
  • D-Alanine metabolism
  • D-Glutamine and D-glutamate metabolism
  • DNA replication
  • Degradation of aromatic compounds
  • Fatty acid biosynthesis
  • Fatty acid metabolism
  • Folate biosynthesis
  • Fructose and mannose metabolism
  • Galactose metabolism
  • Glutathione metabolism
  • Glycerolipid metabolism
  • Glycerophospholipid metabolism
  • Glycine, serine and threonine metabolism
  • Glycolysis / Gluconeogenesis
  • Glyoxylate and dicarboxylate metabolism
  • Homologous recombination
  • Inositol phosphate metabolism
  • Lysine biosynthesis
  • Metabolic pathways
  • Methane metabolism
  • Microbial metabolism in diverse environments
  • Mismatch repair
  • Monobactam biosynthesis
  • Naphthalene degradation
  • Nicotinate and nicotinamide metabolism
  • Nitrogen metabolism
  • Nucleotide excision repair
  • One carbon pool by folate
  • Other glycan degradation
  • Oxidative phosphorylation
  • Pantothenate and CoA biosynthesis
  • Penicillin and cephalosporin biosynthesis
  • Pentose and glucuronate interconversions
  • Pentose phosphate pathway
  • Peptidoglycan biosynthesis
  • Phenylalanine, tyrosine and tryptophan biosynthesis
  • Phosphotransferase system (PTS)
  • Polyketide sugar unit biosynthesis
  • Porphyrin and chlorophyll metabolism
  • Propanoate metabolism
  • Protein export
  • Purine metabolism
  • Pyrimidine metabolism
  • Pyruvate metabolism
  • RNA degradation
  • RNA polymerase
  • Riboflavin metabolism
  • Ribosome
  • Secondary bile acid biosynthesis
  • Selenocompound metabolism
  • Starch and sucrose metabolism
  • Streptomycin biosynthesis
  • Styrene degradation
  • Sulfur metabolism
  • Sulfur relay system
  • Taurine and hypotaurine metabolism
  • Terpenoid backbone biosynthesis
  • Thiamine metabolism
  • Tryptophan metabolism
  • Two-component system
  • Ubiquinone and other terpenoid-quinone biosynthesis
  • Valine, leucine and isoleucine biosynthesis
  • Valine, leucine and isoleucine degradation
  • Vancomycin resistance
  • Vitamin B6 metabolism
  • Xylene degradation
  • beta-Alanine metabolism
  • beta-Lactam resistance

  • CLUSTERS WITH
    METABOLOMICS       
    ANTIBIOTIC RESISTANCE   
  • Vancomycin (vanwb)
  • Teicoplanin (vanz)
  • Paromomycin (aph3iiia)
  • Neomycin (aph3iiia)
  • Kanamycin (aph3iiia)
  • Ribostamycin (aph3iiia)
  • Lividomycin (aph3iiia)
  • Isepamicin (aph3iiia)
  • Butirosin (aph3iiia)
  • Amikacin (aph3iiia)
  • Gentamincin b (aph3iiia)
  • Vancomycin (vanxye)
  • Vancomycin (vansa)
  • Teicoplanin (vansa)
  • Vancomycin (vansb)
  • Monobactam (bl2be_shv2)
  • E cephalosproin (bl2be_shv2)
  • Penicillin (bl2be_shv2)
  • N cephalosproin (bl2be_shv2)
  • Streptomycin (str)
  • Macrolide (mefa)
  • Streptogramin b (lsa)
  • Lincosamide (lsa)
  • Macrolide (lsa)
  • Vancomycin (vanc)
  • Penicillin (bl2a_pc)
  • Vancomycin (vanhd)
  • Teicoplanin (vanhd)
  • Vancomycin (vanyd)
  • Teicoplanin (vanyd)
  • Vancomycin (vanse)
  • Tetracycline (tetl)
  • Vancomycin (vansd)
  • Teicoplanin (vansd)
  • Tetracycline (tetm)
  • Vancomycin (vanrb)
  • Vancomycin (vana)
  • Teicoplanin (vana)
  • Vancomycin (vant)
  • Vancomycin (vanha)
  • Teicoplanin (vanha)
  • Tetracycline (tets)
  • Vancomycin (vansc)
  • Vancomycin (vanxyc)
  • Vancomycin (vanrd)
  • Teicoplanin (vanrd)
  • Vancomycin (vanwg)
  • Vancomycin (vanxd)
  • Teicoplanin (vanxd)
  • Vancomycin (vanre)
  • Vancomycin (vanrc)
  • Streptomycin (aad9)
  • Spectomycin (aad9)
  • Vancomycin (vanyg)
  • Vancomycin (vanyb)
  • Tobramycin (aac6ie)
  • Netilmicin (aac6ie)
  • Isepamicin (aac6ie)
  • Amikacin (aac6ie)
  • Sisomicin (aac6ie)
  • Dibekacin (aac6ie)
  • Vancomycin (vane)
  • Trimethoprim (dfra12)
  • Spectinomycin (ant3ia)
  • Streptomycin (ant3ia)
  • Vancomycin (vang)
  • Streptogramin b (ermb)
  • Lincosamide (ermb)
  • Macrolide (ermb)
  • Vancomycin (vanya)
  • Teicoplanin (vanya)
  • Chloramphenicol (cata7)
  • Vancomycin (vanhb)
  • Vancomycin (vante)
  • Vancomycin (vanra)
  • Teicoplanin (vanra)
  • Vancomycin (vanb)
  • Fluoroquinolone (emea)
  • Streptogramin b (msra)
  • Lincosamide (msra)
  • Macrolide (msra)
  • Streptomycin (aad9ib)
  • Spectomycin (aad9ib)
  • Vancomycin (vansg)
  • Vancomycin (vanxyg)
  • Vancomycin (vanxa)
  • Teicoplanin (vanxa)
  • Streptogramin a (vatd)
  • Vancomycin (vanxb)
  • Streptogramin a (vate)
  • Tetracycline (tett)
  • Cephalosproin (bl1_ampc)
  • Lincomycin (lnub)
  • Vancomycin (vand)
  • Teicoplanin (vand)
  • Tetracycline (teto)
  • Tetracycline (tetu)
  • Cephalosporin (bl2b_tem)
  • Penicillin (bl2b_tem)
  • Chloramphenicol (cata8)
  • Vancomycin (vanug)
  • Vancomycin (vanrg)
  • Vancomycin (vantg)
  • Chloramphenicol (cata9)
  • BIOFILM FORMERS   COGEM PATHOGENICITY   

    OPUS 23™ IS A REGISTERED TRADEMARK ® OF DATAPUNK BIOINFORMATICS, LLC. COPYRIGHT © 2015-2023. ALL RIGHTS RESERVED.     |