Bordetella

   RANK: Genus

TAXONOMY: cellular organisms -> Bacteria -> Proteobacteria -> Betaproteobacteria -> Burkholderiales -> Alcaligenaceae -> Bordetella

OVERVIEW:

Bordetella is a genus of small (0.2 - 0.7 µm), Gram-negative coccobacilli of the phylum Proteobacteria. Bordetella species, with the exception of B. petrii, are obligate aerobes, as well as highly fastidious, or difficult to culture. Three species are human pathogens (B. pertussis, B. parapertussis, B. bronchiseptica); one of these (B. bronchiseptica) is also motile. B. pertussis and occasionally B. parapertussis cause pertussis or whooping cough in humans, and some B. parapertussis strains can colonise sheep. B. bronchiseptica rarely infects healthy humans, though disease in immunocompromised patients has been reported. B. bronchiseptica causes several diseases in other mammals, including kennel cough and atrophic rhinitis in dogs and pigs, respectively. Other members of the genus cause similar diseases in other mammals, and in birds (B. hinzii, B. avium).The most thoroughly studied of the Bordetella species are B. bronchiseptica, B. pertussis and B. parapertussis, and the pathogenesis of respiratory disease caused by these bacteria has been reviewed. Transmission occurs by direct contact, or via respiratory aerosol droplets, or fomites. Bacteria initially adhere to ciliated epithelial cells in the nasopharynx, and this interaction with epithelial cells is mediated by a series of protein adhesins. These include filamentous haemaglutinin, pertactin, fimbriae, and pertussis toxin (though expression of pertussis toxin is unique to B. pertussis). As well as assisting in adherence to epithelial cells, some of these are also involved in attachment to immune effector cells.

This genus contains microbial species that can reside in the human gastrointestinal tract. [PMC 4262072]



TAGS
Keystone Core species Type species Pathogen Dysbiosis associated Flora/ commensal Gut associated Probiotic
Leanness Obesity Skin microbiome Fecal distribution Oral microbiome Vaginal microbiome Butyrate producer Catalase producer
Histamine producer Food fermenter Amylolytic Propionate producer Nitrifying
DESCENDANTS
INTERACTIONS
KEGG PATHWAYS
  • 2-Oxocarboxylic acid metabolism
  • ABC transporters
  • Alanine, aspartate and glutamate metabolism
  • Amino sugar and nucleotide sugar metabolism
  • Aminoacyl-tRNA biosynthesis
  • Aminobenzoate degradation
  • Arachidonic acid metabolism
  • Arginine and proline metabolism
  • Arginine biosynthesis
  • Ascorbate and aldarate metabolism
  • Bacterial chemotaxis
  • Bacterial secretion system
  • Base excision repair
  • Benzoate degradation
  • Biosynthesis of amino acids
  • Biosynthesis of antibiotics
  • Biosynthesis of secondary metabolites
  • Biosynthesis of unsaturated fatty acids
  • Biotin metabolism
  • Butanoate metabolism
  • C5-Branched dibasic acid metabolism
  • Caprolactam degradation
  • Carbapenem biosynthesis
  • Carbon metabolism
  • Carotenoid biosynthesis
  • Cationic antimicrobial peptide (CAMP) resistance
  • Chloroalkane and chloroalkene degradation
  • Chlorocyclohexane and chlorobenzene degradation
  • Citrate cycle (TCA cycle)
  • Cyanoamino acid metabolism
  • Cysteine and methionine metabolism
  • D-Alanine metabolism
  • D-Arginine and D-ornithine metabolism
  • D-Glutamine and D-glutamate metabolism
  • DNA replication
  • Degradation of aromatic compounds
  • Dioxin degradation
  • Ethylbenzene degradation
  • Fatty acid biosynthesis
  • Fatty acid degradation
  • Fatty acid metabolism
  • Flagellar assembly
  • Fluorobenzoate degradation
  • Folate biosynthesis
  • Fructose and mannose metabolism
  • Galactose metabolism
  • Geraniol degradation
  • Glutathione metabolism
  • Glycerolipid metabolism
  • Glycerophospholipid metabolism
  • Glycine, serine and threonine metabolism
  • Glycolysis / Gluconeogenesis
  • Glyoxylate and dicarboxylate metabolism
  • Histidine metabolism
  • Homologous recombination
  • Inositol phosphate metabolism
  • Limonene and pinene degradation
  • Lipoic acid metabolism
  • Lipopolysaccharide biosynthesis
  • Lysine biosynthesis
  • Lysine degradation
  • Metabolic pathways
  • Methane metabolism
  • Microbial metabolism in diverse environments
  • Mismatch repair
  • Monobactam biosynthesis
  • Naphthalene degradation
  • Nicotinate and nicotinamide metabolism
  • Nitrogen metabolism
  • Nitrotoluene degradation
  • Non-homologous end-joining
  • Nonribosomal peptide structures
  • Novobiocin biosynthesis
  • Nucleotide excision repair
  • One carbon pool by folate
  • Oxidative phosphorylation
  • Pantothenate and CoA biosynthesis
  • Pentose and glucuronate interconversions
  • Pentose phosphate pathway
  • Peptidoglycan biosynthesis
  • Pertussis
  • Phenylalanine metabolism
  • Phenylalanine, tyrosine and tryptophan biosynthesis
  • Phosphonate and phosphinate metabolism
  • Phosphotransferase system (PTS)
  • Polycyclic aromatic hydrocarbon degradation
  • Polyketide sugar unit biosynthesis
  • Porphyrin and chlorophyll metabolism
  • Propanoate metabolism
  • Protein export
  • Purine metabolism
  • Pyrimidine metabolism
  • Pyruvate metabolism
  • Quorum sensing00253
  • RNA degradation
  • RNA polymerase
  • Riboflavin metabolism
  • Ribosome
  • Secondary bile acid biosynthesis
  • Selenocompound metabolism
  • Starch and sucrose metabolism
  • Streptomycin biosynthesis
  • Styrene degradation
  • Sulfur metabolism
  • Sulfur relay system
  • Synthesis and degradation of ketone bodies
  • Taurine and hypotaurine metabolism
  • Terpenoid backbone biosynthesis
  • Thiamine metabolism
  • Toluene degradation
  • Tryptophan metabolism
  • Two-component system
  • Tyrosine metabolism
  • Ubiquinone and other terpenoid-quinone biosynthesis
  • Valine, leucine and isoleucine biosynthesis
  • Valine, leucine and isoleucine degradation
  • Vancomycin resistance
  • Vitamin B6 metabolism
  • Xylene degradation
  • alpha-Linolenic acid metabolism
  • beta-Alanine metabolism
  • beta-Lactam resistance

  • CLUSTERS WITH
    METABOLOMICS       
    NUTRIENTS/ SUBSTRATES

    ENDPRODUCTS

    INHIBITED BY

    ENHANCED BY

    BIOTRANSFORMS

    BIOTRANFORM
    ANTIBIOTIC RESISTANCE   BIOFILM FORMERS   
    COGEM PATHOGENICITY   

    OPUS 23™ IS A REGISTERED TRADEMARK ® OF DATAPUNK BIOINFORMATICS, LLC. COPYRIGHT © 2015-2023. ALL RIGHTS RESERVED.     |