Parabacteroides

   RANK: Genus

TAXONOMY: Bacteria -> Bacteroidetes/Chlorobi group -> Bacteroidetes -> Bacteroidia -> Bacteroidales -> Porphyromonadaceae -> Parabacteroides

OVERVIEW:

Parabacteroides help us digest healthful, high-fiber diets that we cannot otherwise process, and their levels are enriched in the presence of these resistant starches. Starting from our mouths and culminating in our stools, these bugs are found throughout our digestive tracts but predominate in our guts.

Commensal bacteria have been shown to modulate the host mucosal immune system. Here, we report that oral treatment of BALB/c mice with components from the commensal, Parabacteroides distasonis, significantly reduces the severity of intestinal inflammation in murine models of acute and chronic colitis induced by dextran sulphate sodium (DSS). The membranous fraction of P. distasonis (mPd) prevented DSS-induced increases in several proinflammatory cytokines, increased mPd-specific serum antibodies and stabilized the intestinal microbial ecology. The anti-colitic effect of oral mPd was not observed in severe combined immunodeficient mice and probably involved induction of specific antibody responses and stabilization of the intestinal microbiota. Our results suggest that specific bacterial components derived from the commensal bacterium, P. distasonis, may be useful in the development of new therapeutic strategies for chronic inflammatory disorders such as inflammatory bowel disease. This genus contains microbial species that can reside in the human gastrointestinal tract. [PMC 4262072]

Parabacteroides Is enhanced by a ketogenic diet in mice, and bacterial cross-feeding decreases gamma-glutamyltranspeptidase activity: inhibiting gamma-glutamylation promotes seizure protection in vivo. DOI: https://doi.org/10.1016/j.cell.2018.04.027

In a study of patients with IBS, presence of SNP 15Phe in the SI gene resulting in reduced enzyme activity correlated with stool frequency and Parabacteroides faecal microbiota abundance. [PMID: 27872184]




Microbial Abundance Data: Parabacteroides
(Percent of total population with standard deviation [PMID: 22698087])
Group 1
Group 2
Group 3
Group 4
Group 1 Avg
Buccal
Mucosa
Keratinized
Gingiva
Hard
Palate
Group 2 Avg
Throat
Throat
Tonsils
Saliva
Group 3 Avg
Supragingival
Plaque
Subgingival
Plaque
Stool
0.018 %
(0.069)
0.013 %
(0.060)
0.003 %
(0.021)
0.037 %
(0.125)
0.021 %
(0.095)
0.040 %
(0.210)
0.010 %
(0.057)
0.001 %
(0.006)
0.034 %
(0.109)
0.004 %
(0.030)
0.001 %
(0.004)
0.007 %
(0.057)
4.088 %
(4.664)
TAGS
Keystone Core species Type species Pathogen Dysbiosis associated Flora/ commensal Gut associated Probiotic
Leanness Obesity Skin microbiome Fecal distribution Oral microbiome Vaginal microbiome Butyrate producer Catalase producer
Histamine producer Food fermenter Amylolytic Propionate producer Nitrifying
DESCENDANTS
INTERACTIONS
KEGG PATHWAYS
  • 2-Oxocarboxylic acid metabolism
  • ABC transporters
  • Alanine, aspartate and glutamate metabolism
  • Amino sugar and nucleotide sugar metabolism
  • Aminoacyl-tRNA biosynthesis
  • Arginine and proline metabolism
  • Arginine biosynthesis
  • Bacterial secretion system
  • Base excision repair
  • Biosynthesis of amino acids
  • Biosynthesis of antibiotics
  • Biosynthesis of secondary metabolites
  • Biosynthesis of unsaturated fatty acids
  • Biotin metabolism
  • Butanoate metabolism
  • Butirosin and neomycin biosynthesis
  • C5-Branched dibasic acid metabolism
  • Carbapenem biosynthesis
  • Carbon metabolism
  • Cationic antimicrobial peptide (CAMP) resistance
  • Citrate cycle (TCA cycle)
  • Cyanoamino acid metabolism
  • Cysteine and methionine metabolism
  • D-Alanine metabolism
  • D-Glutamine and D-glutamate metabolism
  • DNA replication
  • Ether lipid metabolism
  • Fatty acid biosynthesis
  • Fatty acid metabolism
  • Folate biosynthesis
  • Fructose and mannose metabolism
  • Galactose metabolism
  • Glutathione metabolism
  • Glycerolipid metabolism
  • Glycerophospholipid metabolism
  • Glycine, serine and threonine metabolism
  • Glycolysis / Gluconeogenesis
  • Glyoxylate and dicarboxylate metabolism
  • Histidine metabolism
  • Homologous recombination
  • Inositol phosphate metabolism
  • Lipoic acid metabolism
  • Lipopolysaccharide biosynthesis
  • Lysine biosynthesis
  • Lysine degradation
  • Metabolic pathways
  • Methane metabolism
  • Microbial metabolism in diverse environments
  • Mismatch repair
  • Monobactam biosynthesis
  • Nicotinate and nicotinamide metabolism
  • Nitrogen metabolism
  • Novobiocin biosynthesis
  • Nucleotide excision repair
  • One carbon pool by folate
  • Other glycan degradation
  • Oxidative phosphorylation
  • Pantothenate and CoA biosynthesis
  • Pentose and glucuronate interconversions
  • Pentose phosphate pathway
  • Peptidoglycan biosynthesis
  • Phenylalanine metabolism
  • Phenylalanine, tyrosine and tryptophan biosynthesis
  • Phosphonate and phosphinate metabolism
  • Polyketide sugar unit biosynthesis
  • Porphyrin and chlorophyll metabolism
  • Propanoate metabolism
  • Protein export
  • Purine metabolism
  • Pyrimidine metabolism
  • Pyruvate metabolism
  • RNA degradation
  • RNA polymerase
  • Riboflavin metabolism
  • Ribosome
  • Secondary bile acid biosynthesis
  • Selenocompound metabolism
  • Sphingolipid metabolism
  • Starch and sucrose metabolism
  • Streptomycin biosynthesis
  • Sulfur metabolism
  • Taurine and hypotaurine metabolism
  • Terpenoid backbone biosynthesis
  • Thiamine metabolism
  • Two-component system
  • Tyrosine metabolism
  • Ubiquinone and other terpenoid-quinone biosynthesis
  • Valine, leucine and isoleucine biosynthesis
  • Valine, leucine and isoleucine degradation
  • Vancomycin resistance
  • Vitamin B6 metabolism
  • alpha-Linolenic acid metabolism
  • beta-Alanine metabolism
  • beta-Lactam resistance

  • CLUSTERS WITH
    METABOLOMICS       
    NUTRIENTS/ SUBSTRATES

    ENDPRODUCTS

    INHIBITED BY

    ENHANCED BY
  • Resistant starch (type IV)
  • Proton-pump inhibitors (PPI)
  • Ketogenic diet

  • BIOTRANSFORMS

    BIOTRANFORM
  • Trimethylamine
  • Trimethylamine-N-oxide (TMAO)
  • ANTIBIOTIC RESISTANCE   BIOFILM FORMERS   
    COGEM PATHOGENICITY   

    OPUS 23™ IS A REGISTERED TRADEMARK ® OF DATAPUNK BIOINFORMATICS, LLC. COPYRIGHT © 2015-2023. ALL RIGHTS RESERVED.     |